Heterogeneous Catalysis

DOI: 10.1002/ange.201404109

Molybdenum Carbide as Alternative Catalysts to Precious Metals for Highly Selective Reduction of CO₂ to CO**

Marc D. Porosoff, Xiaofang Yang, J. Anibal Boscoboinik, and Jingguang G. Chen*

Abstract: Rising atmospheric CO_2 is expected to have negative effects on the global environment from its role in climate change and ocean acidification. Utilizing CO_2 as a feedstock to make valuable chemicals is potentially more desirable than sequestration. A substantial reduction of CO_2 levels requires a large-scale CO_2 catalytic conversion process, which in turn requires the discovery of low-cost catalysts. Results from the current study demonstrate the feasibility of using the non-precious metal material molybdenum carbide (Mo_2C) as an active and selective catalyst for CO_2 conversion by H_2 .

To sustain future population and economic growth, the global energy supply is expected to increase by 60% by 2040, [1] but the associated CO_2 emissions are a major concern. CO_2 capture and conversion must become a significant industry to mitigate the threat of climate change and ocean acidification. [2,3] Efforts have already been put forth to capture and sequester CO_2 ; [4,5] however, a process that can efficiently convert CO_2 into a commodity chemical has the potential to provide a better solution compared to sequestration. [6,7] One attractive route is converting CO_2 into CO, which can be used as feedstock in the Fischer–Tropsch process, a well known and well characterized route that has been used in industry to produce chemicals and synthetic fuels from syngas ($CO + H_2$) for many decades.

Precious metals are the most commonly used catalysts for CO_2 conversion by H_2 .^[8,9] It is generally accepted that catalytic conversion of CO_2 by H_2 occurs over precious metal catalysts in two principle steps.^[10] First, metal sites facilitate the dissociation of molecular hydrogen and the

[*] Prof. Dr. J. G. Chen

Department of Chemical Engineering, Columbia University 500 W. 120th St., New York, NY 10027 (USA)

E-mail: jgchen@columbia.edu

M. D. Porosoff

Department of Chemical and Biomolecular Engineering University of Delaware

150 Academy St., Newark, DE 19716 (USA)

Dr. X. Yang

Chemistry Department, Brookhaven National Laboratory 2 Center St., Upton, NY 11973 (USA)

Dr. J. A. Boscoboinik

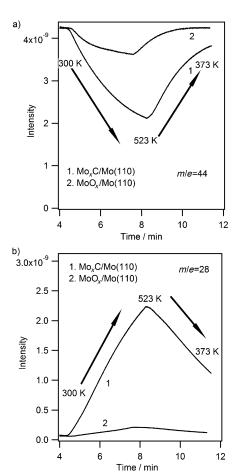
Center for Functional Nanomaterials (CFN)

Brookhaven National Laboratory

2 Center St., Upton, NY 11973 (USA)

[**] The work carried out at BNL Chemistry and CFN was sponsored under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy, Office of Science, Division of Chemical Sciences.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201404109.


hydrogenation of CO₂ into formate,^[11] then the oxide support assists with the cleavage of the C=O bond. Therefore, this reaction requires a dual functional catalyst that exhibits high activity for both hydrogen dissociation and C=O bond scission. It has been previously shown^[12] that platinum (Pt) based catalysts supported on CeO₂, a reducible oxide, were more active for CO₂ conversion than those supported on γ-Al₂O₃, an irreducible oxide.^[13] However, in an effort to reduce material costs for CO₂ conversion, it is important to minimize or eliminate precious metals in catalysts. This is particularly important for large-scale processes that would be required to substantially reduce CO₂ emissions.

Transition metal carbides (TMCs) are attractive alternatives because they have similar properties to precious metal catalysts in reforming, [14,15] hydrogenation, [16] water-gas shift (WGS), [17,18] and CO oxidation [19,20] reactions. The high activity of TMCs compared with their parent metals originates from a modification of the electronic properties from the addition of carbon, [21] which in turn affects the binding energy and the reactivity of adsorbates. [22] Mo₂C is particularly interesting for CO₂ conversion because of its low cost, dual functionality for H₂ dissociation and C=O bond scission, and potential to behave similarly to reducible oxides.

In CO₂ conversion by H₂, CO is a desired product for its ability to be used in the Fischer-Tropsch process, while CH₄ is undesired because of its low volumetric energy density and abundance. [23] Thus, modifying Mo₂C with a metal that can dissociate the unwanted product, CH₄, and thereby recarburize the catalyst to maintain its active, carbidic form is highly desirable. Here, we first investigate CO₂ activation over welldefined Mo₂C surfaces with temperature-programmed surface reaction (TPSR) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) experiments to confirm the active nature of the Mo₂C surface toward CO₂ conversion to CO. Then, model surface results are extended to flow reactor experiments over porous Mo₂C catalysts, and further explained by in-situ X-ray absorption near edge spectroscopy (XANES) experiments. The findings show that Mo₂C outperforms precious metal bimetallic catalysts and is highly active and selective for CO₂ conversion to CO. The activity, selectivity and stability of Mo₂C can be further improved by modifying the carbide with another metal, cobalt (Co).

The TPSR experiments over a Mo_2C model surface, prepared by carburizing a single-crystal Mo(110) substrate, were conducted using the AP-XPS system at Brookhaven National Laboratory. The TPSR for CO_2 hydrogenation was conducted under 100 mTorr CO_2 and 700 mTorr H_2 . Five gasphase species, m/e = 44 (CO_2), 31 (methanol), 28 (CO), 18 (CO) and 15 (CO), were recorded while the sample was heated to 523 K and then cooled to 373 K. TPSR results for

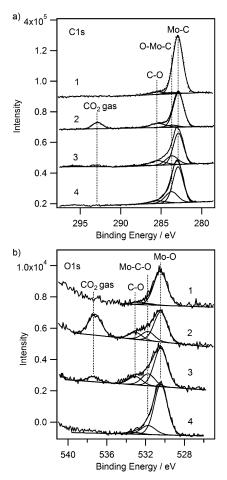


Figure 1. TPSR of CO₂ conversion over 1) Mo_xC/Mo(110) and 2) MoO_x/Mo(110). a) m/e = 44, corresponding to consumption of CO₂; b) m/e = 28, corresponding to production of CO. TPSR conditions: 100 mTorr CO₂, 700 mTorr H₂.

 ${\rm CO_2}\,(m/e=44)$ in Figure 1 a show that ${\rm Mo_2C/Mo}(110)$ is much more active for ${\rm CO_2}$ activation than ${\rm MoO_x/Mo}(110)$. Figure 1 b shows the production of CO (m/e=28) from the two surfaces. Comparison of other products is shown in Figure S2 in the Supporting Information. Neither ${\rm CH_4}\,(m/e=15)$ nor methanol (m/e=31) was detected. Thus, the ${\rm Mo_2C}$ surface is highly selective in converting ${\rm CO_2}$ to CO.

AP-XPS investigations of the Mo₂C/Mo(110) surface under CO₂ reduction by H₂ conditions were performed to identify possible surface reaction intermediates. Figure 2 shows the C1s and O1s regions of surface species on Mo₂C/ Mo(110) under near-ambient pressures. As seen in Figure 2 a-1, evidence for the formation of carbide is shown by the appearance of the C1s peak at 282.9 eV, consistent with the reported value of 282.8 eV.[24] The O1s peak at 530.4 eV is attributed to the presence of small amounts (ca. 10%) of unreduced MoO_x on the surface. After exposing the surface to 150 mTorr CO₂, the C1s and O1s peaks of gas-phase CO₂ appear at 292.0 and 537.3 eV, respectively. A small peak at 283.6 eV is assigned to oxycarbide (O-Mo-C), in agreement with the reported value of 283.5 eV for molybdenum oxycarbide powder catalysts.^[24] The O1s of oxygen-modified Mo₂C, with the oxygen bonded to carbon, appears at

Figure 2. AP-XPS of a) C1s and b) O1s of Mo₂C under various treatment conditions for CO₂ activation. 1) Clean Mo₂C, 2) 150 mTorr CO₂ at room temperature, 3) 150 mTorr CO₂ + 550 mTorr H₂ with annealing to 523 K, then cooling to room temperature, 4) 150 mTorr CO₂ + 550 mTorr H₂ at 523 K.

531.7 eV.^[15] Table S1 in the Supporting Information summarizes the binding energies for both C1s and O1s peaks.

After reaction at 523 K, both C1s and O1s peaks of gasphase CO₂ are significantly reduced, corresponding to the consumption of CO₂ by reaction. Meanwhile, the C1s peak at 283.6 eV and O1s peak at 531.7 eV increase in intensity, indicating higher coverage of surface oxycarbide after reaction. Figure 2a-4 and b-4 show the AP-XPS results during reaction at 523 K. Under reaction conditions, the major surface species are oxycarbides, indicating the presence of oxygen atoms on the Mo₂C surface during CO₂ reaction contributes to the catalytic activity. Previous studies over oxide-supported metal catalysts have proposed carbonate (CO_3) , carboxyl $(CO_2^{\delta-})$ and formate (HCOO) as the reaction intermediates for CO₂ activation.^[25-27] These surface intermediates have been identified by AP-XPS on Cu and CeO_x/Cu(111) surfaces after exposing CO₂ at ambient pressure, with intense C1s peaks for CO₃, CO₂^{δ-} and HCOO located at 289.3, 288.4 and 287.3 eV, respectively.^[24] In comparison, the AP-XPS measurements on Mo₂C in Figure 2 do not show evidence supporting the presence of these intermediates, suggesting a different reaction mechanism for CO_2 activation on Mo_2C . One potential pathway is the direct reaction of CO_2 with Mo_2C to produce CO and oxycarbide (Mo_2C -O), with Mo_2C -O being subsequently reduced by hydrogen to produce H_2O and Mo_2C . This is consistent with the detection of H_2O in the TPSR experiments in Figure S2 and with previous studies of steady-state H_2O production from the hydrodeoxygenation of C_3 oxygenates over Mo_2C . $^{[28]}$

Further studies in a flow reactor at 573 K over Mo₂C powder catalysts were carried out to verify the trends seen in the idealized model surfaces. Several precious metal based bimetallic catalysts, demonstrated previously in a batch reactor to be more active for CO₂ conversion than monometallic Pt or Pd,^[12] were also evaluated as references. Experimental information regarding reactor studies and the synthesis and characterization of the catalysts can be found in the Supporting Information. Steady-state reactor results in Figure 3 a show that the turnover frequency (TOF) on CeO₂-

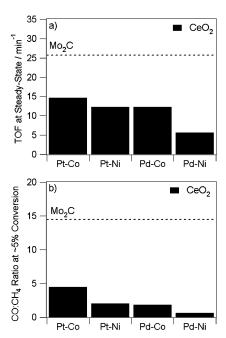


Figure 3. a) TOF and b) selectivity at 573 K on bimetallic supported catalysts on CeO_2 (black bars) and Mo_2C (dashed line).

supported catalysts follows the trend of Pt-Co > Pt-Ni \approx Pd-Co > Pd-Ni. The conversion of each of the bimetallic catalysts, including monometallic Ni and Co can be found in Figure S7. Although bimetallic catalysts are active for CO_2 reduction, Figure 3 indicates that Mo_2C clearly outperforms them in both activity and selectivity. Specific values for TOF and $CO:CH_4$ ratio are shown in Table 1. The higher activity of Mo_2C may originate from its direct participation in the reaction through facile oxygen transfer. Upon CO_2 dissociation, an oxygen atom is incorporated into Mo_2C , forming an oxycarbide that can be subsequently reduced by H_2 . This process of oxygen transfer is analogous to the role of the reducible oxide in CeO_2 -supported bimetallic catalysts. [12]

Figure 3 shows that bimetallic catalysts containing Co outperform their Ni containing counterparts. Therefore, by

Table 1: Summary of conversion, TOF and selectivity of selected bimetallic catalysts, Mo₂C and 7.5 wt% Co-Mo₂C.

Catalyst	Conversion [%]	TOF [min ⁻¹]	CO:CH₄ Ratio
PtCo/CeO ₂	6.6	14.6	4.5
PdNi/CeO ₂	2.5	5.6	0.6
Mo ₂ C	8.7	25.7	14.5
Co-Mo ₂ C	9.5	16.1	51.3

combining Co with the highly active Mo_2C catalyst, it is possible to further improve the catalytic performance of Mo_2C . As shown in Table 1, the addition of 7.5 wt% Co to Mo_2C leads to an increase in conversion from 8.7 to 9.5% while the $CO:CH_4$ ratio improves from 15 to 51.

In a study by Izhar et al., Co-Mo₂C catalysts dissociate CH_4 into H_2 and C, with amorphous $CoMoC_yO_z$ being identified as the critical active phase that dissociates CH_4 . In the current study, the ability of $Co-Mo_2C$ to dissociate CH_4 is most likely responsible for improving the $CO:CH_4$ selectivity by reacting with the CH_4 product or CH_x intermediate that leads to CH_4 formation.

Further evidence of the effect of Co on Mo_2C for CO_2 conversion is shown as a function of Co loading in Figure S8. The 7.5 wt % Co- Mo_2C was identified as the optimal catalyst investigated in this study, and stability measurements in a flow reactor were conducted to measure the steady-state conversion and $CO:CH_4$ ratio of the catalyst. After 36 h on stream, Co- Mo_2C showed improved activity, selectivity, and stability over Mo_2C . The activity and selectivity of $Co-Mo_2C$ were higher than Mo_2C initially and did not decrease over the course of the reaction. Figure S9 contains the comparison of steady-state results of $Co-Mo_2C$ and Mo_2C .

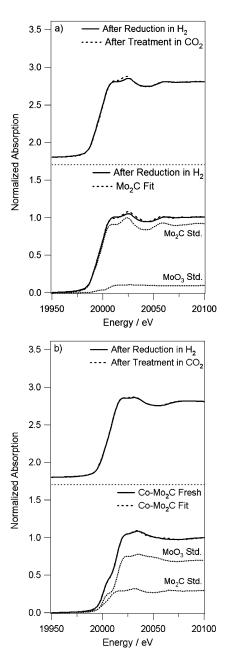

The improved performance of Co-Mo₂C over Mo₂C was likely because the active phase of the catalyst, Mo₂C, was maintained in a carburized state during the reaction, as confirmed by in-situ XANES measurements. Evidence of recarburization of Mo₂C is provided in the Mo₂C/MoO₃ linear fits from XANES spectra of Mo₂C in Table 2, with selected

Table 2: Mo_2C/MoO_3 compositions from linear fits of XANES spectra recorded under various reaction conditions. All reactions performed at 573 K and data collected at room temperature.

Treatment condition	Percent Mo ₂ C [%]	Percent MoO ₃ [%]
Fresh	83.2	16.8
Reduced in H ₂	92.7	7.3
CO ₂	82.7	17.3
$CO_2 + H_2$	91.1	8.9
7.5 wt% Co-Mo ₂ C (Fresh)	29.0	71.0

spectra shown in Figure 4a. The results in Table 2 indicate that a fraction of Mo in Mo_2C can be cycled between reduced and oxidized states. The Mo_2C catalyst cycles between 92.7% $Mo_2C/7.3\%$ MoO_3 under reduction conditions, then forms a greater amount of oxidized species, likely oxycarbide, when exposed to pure CO_2 . With the addition of H_2 to the CO_2 stream at 573 K, some of the oxycarbide is reduced, but the catalyst is not restored to the initial reduced state.

Figure 4. Mo K-edge XANES spectra at room temperature. a) Mo_2C and b) 7.5 wt% Co- Mo_2C . Top panels show Mo K-edge XANES spectra of samples after reduction, and after treatment in CO_2 . Bottom panels contain linear combination fits with contributions from Mo_2C and MoO_3 standards.

In-situ XANES measurements were also performed on the 7.5 wt% Co-Mo₂C catalyst to determine the effect of Co on the oxidation/recarburization cycle. The composition, according to the linear combination fit of the fresh 7.5 wt% Co-Mo₂C catalyst was found to be 29.0% Mo₂C/71.0% MoO₃, a much higher degree of oxidation than the pure Mo₂C (Figure 4b). After further treatments in H₂, CO₂, and CO₂/H₂, the catalyst could no longer be successfully fit by linear combination fit analysis. It is likely that after reduction, a CoMoC_yO_z phase formed, which would explain the inability of a combination of Mo₂C and MoO₃ to accurately represent the catalyst.

Additionally, as seen in Figure 4b, the Mo K-edge of the Co-Mo₂C catalyst is virtually unchanged from reduction in H_2 to treatment in CO_2 at 573 K. This lack of change in the oxidation state of Mo in Co-Mo₂C is a distinct difference from the pure Mo₂C catalyst in Figure 4a. To confirm existence of the CoMoC_yO_z phase, XRD measurements were performed on Mo₂C and Co-Mo₂C. The XRD results, found in the Supporting Information, indicate a change in the structure of Co-Mo₂C upon reduction and the formation of the CoMo-C_yO_z phase. Together, the XANES and XRD observations indicate that a highly stable CoMoC_yO_z phase is formed, which is most likely responsible for the enhanced catalytic performance for CO_2 conversion.

In summary, our findings clearly show that Mo₂C is an active catalyst for CO₂ conversion by H₂, while modifying the catalyst with Co forms a complex with Mo₂C that further improves the activity, selectivity and stability of the catalyst. The active phase of Mo₂C is primarily the carbide phase, as shown by TPSR experiments, but the oxide is generally present throughout the reaction, as indicated by AP-XPS and XANES experiments. The ability of Mo₂C to break the C=O bond, as well as to dissociate hydrogen to either perform hydrogenation of CO₂ or remove oxygen from Mo₂C-O, makes it dual functional and ideal for CO₂ activation. Furthermore, because Mo₂C is made from much more abundant elements than precious metals, the catalyst can be manufactured at much lower cost, which is critical for achieving a substantial reduction of CO2 levels by largescale CO₂ catalytic conversion processes. Furthermore, the reduction of CO2 also requires parallel advancement in the development of low-cost processes for CO₂-free H₂ production, such as in electrolysis or photoelectrochemical conversion of H₂O.

Experimental Section

AP-XPS and TPSR experiments were performed by oxidizing a Mo(110) surface under 1×10^{-6} Torr O_2 at 700 K for 15 min to form MoO_x. The Mo₂C was prepared by a procedure previously described^[30] by exposing Mo(110) to 5×10^{-7} Torr C_2H_4 at 700 K followed by annealing to 1000 K. After preparation, the sample was moved to the entrance of the XPS analyzer and a total of 800 mTorr gases (100 mTorr CO_2 and 700 mTorr H_2) were leaked into the main chamber at 300 K. Then, the sample was heated to 523 K. After reaction, the sample was cooled in the CO_2/H_2 gas mixture. The reaction products (intensities of ions with m/e of 44, 31, 28, 18 and 15) were recorded with time. The surface species were examined by AP-XPS. The O1s and C1s peaks were measured under the photon energy of 706 eV and 538 eV, respectively. All of the reported binding energies were calibrated by the Au4f7/2 peak of a gold foil at 84.0 eV.

Monometallic and bimetallic catalysts were synthesized by incipient wetness impregnation over as-is commercially obtained CeO_2 (35–45 m^2g^{-1} , cubic, Sigma–Aldrich) support. Mo_2C was synthesized in a procedure adapted from Shi et al.^[31] BET analysis showed that the synthesized Mo_2C had a surface area of ca. 24.5 m^2g^{-1} . Cobalt metal was impregnated onto the Mo_2C through evaporation-deposition of $Co(NO_3)_2$ -6 H_2O (Alfa Aesar). Pulse CO chemisorption was performed using an AMI-200ip (Altamira) to compare the number of active sites in each Co- Mo_2C catalyst.

EXAFS measurements were used to confirm the structure of Mo_2C , while XANES measurements confirmed the oxidation state of Mo_2C . Mo K-edge spectra were recorded for Mo_2C and 7.5 wt% Co-

 ${\rm Mo_2C}$ under the same procedure in a custom designed, in-situ glassy carbon cell. Initial spectra were recorded at room temperature and after reduction in ${\rm H_2}$ and He at 723 K. Following reduction, the sample was treated with a ${\rm CO_2}$ and ${\rm H_2}$ gas mixture, then pure ${\rm CO_2}$. During each gas treatment, the glassy carbon cell was heated at 573 K for 90 min, and then cooled to room temperature before XANES spectra were collected. The spectra from each treatment condition was fitted by a linear combination of ${\rm MoO_3}$ and ${\rm Mo_2C}$ standards.

Reactor studies of powder catalysts were carried out in a quartz U-tube reactor under atmospheric pressure. In each experiment, approximately 100 mg catalyst (60–80 mesh) was loaded into the flow reactor. Prior to reaction, the catalyst was reduced under a 1:1 hydrogen and helium mixture (50 mLmin⁻¹ total flow) at 723 K for 1 h. For each reaction, CO₂ and hydrogen were set at 20 mLmin⁻¹ and 40 mLmin⁻¹, respectively. For each experiment, the temperature was ramped to 573 K and held steady for approximately 8 h. In the case of stability studies, the temperature was held constant for 36 h. Product streams were analyzed by online gas chromatography equipped with a flame ionization detector (FID) and thermal conductivity detector (TCD). The concentration of each gas-phase species was calibrated by correlating the peak area of the pure compound to its concentration in a standard calibration gas.

Received: April 8, 2014 Revised: May 2, 2014

Published online: May 19, 2014

Keywords: cobalt \cdot CO₂ Conversion \cdot heterogeneous catalysis \cdot molybdenum carbide \cdot XANES

- U.E.I. Administration, International Energy Outlook 2013, Washington DC, 2013; http://www.eia.gov/forecasts/ieo/pdf/ 0484%282013%29.pdf.
- [2] T. R. Knutson, R. E. Tuleya, J. Clim. 2004, 17, 3477 3495.
- [3] J. Hansen, M. Sato, R. Ruedy, K. Lo, D. W. Lea, M. Medina-Elizade, *Proc. Natl. Acad. Sci. USA* 2006, 103, 14288–14293.
- [4] M. Uibu, M. Uus, R. Kuusik, J. Environ. Manage. 2009, 90, 1253 1260.
- [5] S. E. Strand, G. Benford, Environ. Sci. Technol. 2009, 43, 1000– 1007.
- [6] W. Wang, S. P. Wang, X. B. Ma, J. L. Gong, Chem. Soc. Rev. 2011, 40, 3703 – 3727.

- [7] G. Centi, S. Perathoner, Catal. Today 2009, 148, 191 205.
- [8] A. V. Boix, M. A. Ulla, J. O. Petunchi, J. Catal. 1996, 162, 239 249.
- [9] S. Alayoglu, S. K. Beaumont, F. Zheng, V. V. Pushkarev, H. M. Zheng, V. Iablokov, Z. Liu, J. H. Guo, N. Kruse, G. A. Somorjai, Top. Catal. 2011, 54, 778–785.
- [10] C. S. Chen, W. H. Cheng, S. S. Lin, Catal. Lett. 2000, 68, 45–48.
- [11] W. C. Conner, J. L. Falconer, Chem. Rev. 1995, 95, 759-788.
- [12] M. D. Porosoff, J. G. Chen, J. Catal. 2013, 301, 30–37.
- [13] T. Staudt, Y. Lykhach, N. Tsud, T. Skala, K. C. Prince, V. Matolin, J. Libuda, J. Catal. 2010, 275, 181–185.
- [14] J. B. Claridge, A. P. E. York, A. J. Brungs, C. Marquez-Alvarez, J. Sloan, S. C. Tsang, M. L. H. Green, J. Catal. 1998, 180, 85 – 100.
- [15] K. Oshikawa, M. Nagai, S. Omi, J. Phys. Chem. B 2001, 105, 9124–9131.
- [16] P. M. Patterson, T. K. Das, B. H. Davis, Appl. Catal. A 2003, 251, 449-455.
- [17] P. Liu, J. A. Rodriguez, J. Phys. Chem. B 2006, 110, 19418– 19425
- [18] N. M. Schweitzer, J. A. Schaidle, O. K. Ezekoye, X. Pan, S. Linic, L. T. Thompson, J. Am. Chem. Soc. 2011, 133, 2378–2381.
- [19] L. K. Ono, D. Sudfeld, B. Roldan Cuenya, Surf. Sci. 2006, 600, 5041 – 5050.
- [20] K.-Z. Qi, G.-C. Wang, W.-J. Zheng, Surf. Sci. 2013, 614, 53-63.
- [21] P. Liu, J. A. Rodriguez, J. Chem. Phys. 2004, 120, 5414-5423.
- [22] J. G. Chen, Chem. Rev. 1996, 96, 1477 1498.
- [23] C. deLeitenburg, A. Trovarelli, J. Kaspar, J. Catal. 1997, 166, 98 107.
- [24] X. Deng, A. Verdaguer, T. Herranz, C. Weis, H. Bluhm, M. Salmeron, *Langmuir* 2008, 24, 9474–9478.
- [25] A. Goguet, F. C. Meunier, D. Tibiletti, J. P. Breen, R. Burch, J. Phys. Chem. B 2004, 108, 20240 – 20246.
- [26] J. H. Bitter, K. Seshan, J. A. Lercher, J. Catal. 1998, 176, 93-101.
- [27] E. Novák, K. Fodor, T. Szailer, A. Oszko, A. Erdohelyi, *Top. Catal.* 2002, 20, 107–117.
- [28] H. Ren, W. Yu, M. Salciccioli, Y. Chen, Y. Huang, K. Xiong, D. G. Vlachos, J. G. Chen, *ChemSusChem* **2013**, *6*, 798–801.
- [29] S. Izhar, H. Kanesugi, H. Tominaga, M. Nagai, Appl. Catal. A 2007, 317, 82–90.
- [30] H. H. Hwu, J. G. Chen, Surf. Sci. 2003, 536, 75-87.
- [31] C. Shi, A. J. Zhang, X. S. Li, S. H. Zhang, A. M. Zhu, Y. F. Ma, C. T. Au, Appl. Catal. A 2012, 431, 164–170.

6827